
Week 3 - Friday

 What did we talk about last time?
 Files
 Opening
 Closing
 Reading
 Writing
 Polling

 The data in the file is the sequence of bytes it contains
 The metadata of a file gives information about the file itself
 Obscure OS stuff like inode number and hard links to the file
 User ID of the owner
 Group ID of the owner
 Device type
 File size

 This information can be stored in a struct stat and retrieved
with:
 fstat() Gets information from a file descriptor
 stat() Gets information from a path

 The following shows some fields in struct stat
 The st_mode field is a bitwise OR of permissions and other

information from the table on the right
struct stat {
dev_t st_dev; // device of inode
ino_t st_ino; // inode number
mode_t st_mode; // protection mode
nlink_t st_nlink; // hard links to file
uid_t st_uid; // user ID of owner
gid_t st_gid; // group ID of owner
dev_t st_rdev; // device type
off_t st_size; // file size in bytes
// Other fields depending on OS ...

};

Name Description

S_IFIFO Named pipe (IPC)

S_IFCHR Character device (terminal)

S_IFDIR Directory file type

S_IFBLK Block device (disk drive)

S_IFREG Regular file type

S_IFLNK Symbolic link

S_IFSOCK Socket (IPC, networks)

 The following code finds out how big a file (stored with file
descriptor fd) is in bytes:

struct stat metadata;
fstat (fd, &metadata);
printf ("File size: %lld bytes\n",

(long long)metadata.st_size);

 Processes are created, run, and
are eventually destroyed

 As shown in Assignment 2,
processes can also:
 Go into a blocked state, waiting

for I/O
 Be suspended, which means it

doesn't get scheduled
 We can cause an event to

happen to a process by
sending it a signal

 You can send signals to processes from the command line
 Ctrl-C: SIGINT (interrupt)
 Ctrl-Z: SIGTSTP (terminal stop, usually suspends)

 Signals often result in the process being killed
 Perhaps for that reason, the kill command is used to send

arbitrary signals (not just killing ones)
 Flag gives the kind of signal
 Then specify the PID of the process

> kill –KILL 8382

 When using the kill command, the flag can either be the name of
the signal (-KILL) or its number (-9)

 Here are some common signals:
Name Number Description

SIGINT 2 Interrupts the process, generally killing it. Sent with Ctrl-C.

SIGKILL 9 Kills the process. Cannot be ignored or overwritten.

SIGSEGV 11 Sent to a process when it has a segmentation fault.

SIGCHLD 18 Sent to a parent when a child process finishes. Used by wait().

SIGSTOP 23 Suspends the process. Cannot be ignored or overwritten.

SIGTSTP 24 Suspends the process. Sent with Ctrl-Z.

SIGCONT 25 Resumes a suspended process.

 Some signals are similar
 SIGINT and SIGKILL both kill the process
 SIGSTOP and SIGTSTP both suspend the process

 Some of these signals can be overridden to do different things (and some
can't)

 Have you ever meant to put the & down when you run gedit or another
GUI program?
 You can suspend the program by typing Ctrl-Z, then run bg to move it to the

background
 Normally, SIGSEGV causes a program to print an error message and die
 It's possible to make a custom signal handler to do something different
 Debuggers like gdb do this

 Just as you can use the kill command from the command line, you
can also call the kill() function to send a signal to another
process

 The function takes two parameters:
 PID of the process to kill
 int value giving the signal, usually a named constant

 You can usually only kill processes that you own
 Unless you're a superuser (like root)

kill (pid, SIGSTOP); // Suspends process with pid

 Below, a parent forks a child
 The child goes into an infinite loop
 Then, the parent kills the child

pid_t child_pid = fork ();
if (child_pid < 0)

exit (1); // exit if fork failed

if (child_pid == 0)
while (1) ; // child loops

sleep (1); // parent sleeps for 1 second
kill (child_pid, SIGKILL); // parent kills the child

 Although signals have default actions for processes, some signals can be
overridden

 A process can define what happens when, for example, it's interrupted
 First, you need a function that will get called when a particular signal

happens
 It must take an int (the signal) and return void

 Example that prints "I don't want to die!" and then exits

static void
handler(int signal)
{

write(STDOUT_FILENO, "I don't want to die!\n", 21);
exit(0);

}

 Wouldn't it have been easier to call printf() in the previous signal handler
example?

 Yes, but you should not
 Only asynchronous signal safe functions should be called in signal handlers
 Or else the results are unpredictable!

 Functions that have static buffers inside of them (like printf() and
scanf()) are not asynchronous signal safe

 For more information (and a list of functions In you can call):

 TLDR: Keep signal handlers short, don't call functions unless you're sure they're
safe, and printf() and scanf() are not safe

> man signal-safety

 Once you've written the custom signal handler, you have to
override it with the sigaction() function:

 The action parameter is a struct sigaction with a
function pointer to the new handler

 The old parameter is NULL unless you want to find out what
the old signal handler was

int sigaction(int signal, const struct sigaction *action,
struct sigaction *old);

 The following code overrides the SIGINT signal with the handler from a couple
of slides back

 Then it goes into an infinite loop until someone interrupts it (like with Ctrl-C)
int
main (int argc, char *argv[])
{

struct sigaction sa; // Struct we'll add the handler to
memset(&sa, 0, sizeof(sa)); // Zero out the contents first
sa.sa_handler = handler;

// Override SIGINT handler
if (sigaction (SIGINT, &sa, NULL) == -1)

printf ("Failed to overwrite SIGINT.\n");

printf ("Entering loop\n");
while (1); // Loop until signal
return 0;

}

 It's sort of cool that we can make a handler print something special before
crashing the program

 But we can also do some code to handle the signal and then jump back to
a safe location
 Away from blocked I/O or an infinite loop
 Somewhere that's been marked and is still on the stack

 To do that, we need two functions

// Set jump location
int sigsetjmp(sigjmp_buf context, int mask);

// Jump to location
int siglongjmp(sigjmp_buf context, int value);

sigjmp_buf context;

static void handler(int signal)
{
write(STDOUT_FILENO, "I don't want to die!\n", 21);
siglongjmp (context, 1); // Jumps to marked location with value 1 (insane!)

}

int main (int argc, char *argv[])
{
struct sigaction sa;
memset(&sa, 0, sizeof(sa)); sa.sa_handler = handler;

if (sigaction (SIGINT, &sa, NULL) == -1)
printf ("Failed to overwrite SIGINT.\n");

if (sigsetjmp (context, 0)) // Marks location and returns 0 the first time
printf ("Resuming execution\n");

printf ("Entering loop\n");
while (1); // Loop until signal
return 0;

}

 Signal handling can be tricky
 What happens when a signal is sent a second time?
 There are masks you can set in the struct sigaction

that determine if your handler is used repeatedly
 The sigprocmask() function can also be used to change

which signals are blocked, inside of your handler

 Interprocess communication (IPC)

 Finish Assignment 2
 Due tonight by midnight!

 Keep working on Project 1
 Read sections 3.1 and 3.2

	COMP 3400
	Last time
	Questions?
	Assignment 2
	Project 1
	Files
	File metadata
	Interpreting metadata
	Example getting file metadata
	Events and Signals
	Events
	Command line signals
	Common signals
	Details on signals
	Sending signals in a program
	Example of kill() function
	Custom signal handlers
	Asynchronous signal safe
	Overriding the signal handler
	Overriding example
	Reborn like a phoenix
	Full example
	Except, of course, there's more
	Upcoming
	Next time…
	Reminders

