
Week 3 - Friday

 What did we talk about last time?
 Files
 Opening
 Closing
 Reading
 Writing
 Polling

 The data in the file is the sequence of bytes it contains
 The metadata of a file gives information about the file itself
 Obscure OS stuff like inode number and hard links to the file
 User ID of the owner
 Group ID of the owner
 Device type
 File size

 This information can be stored in a struct stat and retrieved
with:
 fstat() Gets information from a file descriptor
 stat() Gets information from a path

 The following shows some fields in struct stat
 The st_mode field is a bitwise OR of permissions and other

information from the table on the right
struct stat {
dev_t st_dev; // device of inode
ino_t st_ino; // inode number
mode_t st_mode; // protection mode
nlink_t st_nlink; // hard links to file
uid_t st_uid; // user ID of owner
gid_t st_gid; // group ID of owner
dev_t st_rdev; // device type
off_t st_size; // file size in bytes
// Other fields depending on OS ...

};

Name Description

S_IFIFO Named pipe (IPC)

S_IFCHR Character device (terminal)

S_IFDIR Directory file type

S_IFBLK Block device (disk drive)

S_IFREG Regular file type

S_IFLNK Symbolic link

S_IFSOCK Socket (IPC, networks)

 The following code finds out how big a file (stored with file
descriptor fd) is in bytes:

struct stat metadata;
fstat (fd, &metadata);
printf ("File size: %lld bytes\n",

(long long)metadata.st_size);

 Processes are created, run, and
are eventually destroyed

 As shown in Assignment 2,
processes can also:
 Go into a blocked state, waiting

for I/O
 Be suspended, which means it

doesn't get scheduled
 We can cause an event to

happen to a process by
sending it a signal

 You can send signals to processes from the command line
 Ctrl-C: SIGINT (interrupt)
 Ctrl-Z: SIGTSTP (terminal stop, usually suspends)

 Signals often result in the process being killed
 Perhaps for that reason, the kill command is used to send

arbitrary signals (not just killing ones)
 Flag gives the kind of signal
 Then specify the PID of the process

> kill –KILL 8382

 When using the kill command, the flag can either be the name of
the signal (-KILL) or its number (-9)

 Here are some common signals:
Name Number Description

SIGINT 2 Interrupts the process, generally killing it. Sent with Ctrl-C.

SIGKILL 9 Kills the process. Cannot be ignored or overwritten.

SIGSEGV 11 Sent to a process when it has a segmentation fault.

SIGCHLD 18 Sent to a parent when a child process finishes. Used by wait().

SIGSTOP 23 Suspends the process. Cannot be ignored or overwritten.

SIGTSTP 24 Suspends the process. Sent with Ctrl-Z.

SIGCONT 25 Resumes a suspended process.

 Some signals are similar
 SIGINT and SIGKILL both kill the process
 SIGSTOP and SIGTSTP both suspend the process

 Some of these signals can be overridden to do different things (and some
can't)

 Have you ever meant to put the & down when you run gedit or another
GUI program?
 You can suspend the program by typing Ctrl-Z, then run bg to move it to the

background
 Normally, SIGSEGV causes a program to print an error message and die
 It's possible to make a custom signal handler to do something different
 Debuggers like gdb do this

 Just as you can use the kill command from the command line, you
can also call the kill() function to send a signal to another
process

 The function takes two parameters:
 PID of the process to kill
 int value giving the signal, usually a named constant

 You can usually only kill processes that you own
 Unless you're a superuser (like root)

kill (pid, SIGSTOP); // Suspends process with pid

 Below, a parent forks a child
 The child goes into an infinite loop
 Then, the parent kills the child

pid_t child_pid = fork ();
if (child_pid < 0)

exit (1); // exit if fork failed

if (child_pid == 0)
while (1) ; // child loops

sleep (1); // parent sleeps for 1 second
kill (child_pid, SIGKILL); // parent kills the child

 Although signals have default actions for processes, some signals can be
overridden

 A process can define what happens when, for example, it's interrupted
 First, you need a function that will get called when a particular signal

happens
 It must take an int (the signal) and return void

 Example that prints "I don't want to die!" and then exits

static void
handler(int signal)
{

write(STDOUT_FILENO, "I don't want to die!\n", 21);
exit(0);

}

 Wouldn't it have been easier to call printf() in the previous signal handler
example?

 Yes, but you should not
 Only asynchronous signal safe functions should be called in signal handlers
 Or else the results are unpredictable!

 Functions that have static buffers inside of them (like printf() and
scanf()) are not asynchronous signal safe

 For more information (and a list of functions In you can call):

 TLDR: Keep signal handlers short, don't call functions unless you're sure they're
safe, and printf() and scanf() are not safe

> man signal-safety

 Once you've written the custom signal handler, you have to
override it with the sigaction() function:

 The action parameter is a struct sigaction with a
function pointer to the new handler

 The old parameter is NULL unless you want to find out what
the old signal handler was

int sigaction(int signal, const struct sigaction *action,
struct sigaction *old);

 The following code overrides the SIGINT signal with the handler from a couple
of slides back

 Then it goes into an infinite loop until someone interrupts it (like with Ctrl-C)
int
main (int argc, char *argv[])
{

struct sigaction sa; // Struct we'll add the handler to
memset(&sa, 0, sizeof(sa)); // Zero out the contents first
sa.sa_handler = handler;

// Override SIGINT handler
if (sigaction (SIGINT, &sa, NULL) == -1)

printf ("Failed to overwrite SIGINT.\n");

printf ("Entering loop\n");
while (1); // Loop until signal
return 0;

}

 It's sort of cool that we can make a handler print something special before
crashing the program

 But we can also do some code to handle the signal and then jump back to
a safe location
 Away from blocked I/O or an infinite loop
 Somewhere that's been marked and is still on the stack

 To do that, we need two functions

// Set jump location
int sigsetjmp(sigjmp_buf context, int mask);

// Jump to location
int siglongjmp(sigjmp_buf context, int value);

sigjmp_buf context;

static void handler(int signal)
{
write(STDOUT_FILENO, "I don't want to die!\n", 21);
siglongjmp (context, 1); // Jumps to marked location with value 1 (insane!)

}

int main (int argc, char *argv[])
{
struct sigaction sa;
memset(&sa, 0, sizeof(sa)); sa.sa_handler = handler;

if (sigaction (SIGINT, &sa, NULL) == -1)
printf ("Failed to overwrite SIGINT.\n");

if (sigsetjmp (context, 0)) // Marks location and returns 0 the first time
printf ("Resuming execution\n");

printf ("Entering loop\n");
while (1); // Loop until signal
return 0;

}

 Signal handling can be tricky
 What happens when a signal is sent a second time?
 There are masks you can set in the struct sigaction

that determine if your handler is used repeatedly
 The sigprocmask() function can also be used to change

which signals are blocked, inside of your handler

 Interprocess communication (IPC)

 Finish Assignment 2
 Due tonight by midnight!

 Keep working on Project 1
 Read sections 3.1 and 3.2

	COMP 3400
	Last time
	Questions?
	Assignment 2
	Project 1
	Files
	File metadata
	Interpreting metadata
	Example getting file metadata
	Events and Signals
	Events
	Command line signals
	Common signals
	Details on signals
	Sending signals in a program
	Example of kill() function
	Custom signal handlers
	Asynchronous signal safe
	Overriding the signal handler
	Overriding example
	Reborn like a phoenix
	Full example
	Except, of course, there's more
	Upcoming
	Next time…
	Reminders

